
J O U R N A L  OF M A T E R I A L S  S C I E N C E  27 (1992) 3502-3510  

General method for determination of 
crack-interface bridging stresses 

X I A O - Z H I  HU, Y I U - W I N G  MAI  
Centre for Advanced Materials Technology, Department of Mechanical Engineering, 
University of Sydney, NSW 2006, Australia 

A simple compliance approach is presented for the determination of crack-interface bridging 
stresses in quasi-brittle materials. This technique is based upon the consideration that an un- 
loading compliance measured experimentally differs from the linear elastic compliance of the 
same crack length because of the influence of the bridging stresses. A general crack-interface 
bridging theory is developed from which the bridging stresses can be obtained utilizing the 
difference in these compliances. Experimental data from a range of engineering materials in- 
cluding alumina and duplex ceramics, cellulose fibre cements and carbon fibre/epoxy com- 
posites are used to verify the bridging theory and several interesting results are obtained. A 
novel toughness curve obtained with a new compliance qb function is presented and used to 
elucidate the crack-interface bridging associated R curve behaviour. 

1. In t roduct ion  
The concept of crack resistance, R, curve has been 
frequently used to characterize the crack growth res- 
istance, in terms of either the stress intensity factor, 
KR, or the potential energy release rate, GR, with 
crack extension, Aa, for a wide range of engineering 
materials including many fibre composites, ceramics 
and cementitious materials [1-4]. One of us [2] has 
recently discussed the various types of toughening 
mechanisms associated with these different materials 
that would give rise to crack-tip shielding so that the 
fracture toughness is apparently increased. For con- 
venience, these toughening mechanisms can be 
broadly divided into two categories: frontal shielding 
(ahead of the crack tip) and wake shielding (behind the 
crack tip). Examples of the former are plasticity- 
induced toughening, frontal microcracking, crack 
front deflection and twisting etc.; examples of the latter 
are notably phase transformation toughening, fibre 
and grain bridging. 

In this paper we are primarily concerned with the 
wake shielding or crack-interface bridging mech- 
anisms that produce the crack resistance curves which 
have already been reported for several materials, e.g. 
fibre composites [5-7], ceramics [8-10] and cementi- 
tious materials [11-13]. Here, bridging is used to mean 
that the crack-interface behind its advancing tip is still 
connected, either by unbroken fibres (for fibre com- 
posites) or by localized grain interlocking, zig-zagging 
and branching cracks leaving behind untorn ligaments 
(for ceramics and cementitious materials). Consequen- 
tly, bridging stresses represent any cohesive (or clos- 
ure) stresses behind the crack tip, which are generated 
by fibre or grain pull-out and any other damage 

processes in the bridging zone. It is these bridging 
stresses that effectively shield the crack tip and hence 
are responsible for the rising crack resistance curve 
behaviour of these materials. Thus, if the bridging 
stresses can be accurately measured, toughness 
characterization and theoretical modelling of R curves 
may be very easily conducted. Despite some attempts 
to measure such stresses using both direct [14, 15] and 
indirect [16-18] methods, they are either too difficult 
experimentally or the results too subjectively inter- 
preted. Besides, all these measurements have been 
exclusively restricted to cementitious materials. The 
purpose of this paper is to establish a general method 
which can be easily used to determine the bridging 
stresses in any given material that has a R curve 
characteristic due to crack shielding mechanisms 
operating at the wake of the crack tip. 

The classic crack-wake sawcut experiments of 
Knehans and Steinbrech [8] have provided some 
direct evidence for the influence of crack-interface 
bridging in alumina ceramics by comparing the two R 
curves obtained before and after the sawcut. The R 
curve of an alumina notched-bend specimen was first 
measured for a certain amount of crack growth. Then 
the specimen was re-notched nearly to the observed 
crack tip and the R curve remeasured. It was found 
that at the beginning the R curve obtained after re- 
notching did not follow the previous R curve before 
re-notching. Instead it started at a lower value and 
only resumed the trend of the previous R curve after 
some crack growth. These results can only be satis- 
factorily explained in terms of the removal of bridges 
due to re-notching and they demonstrate the un- 
equivocal influence of the bridging stresses on the R 
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curve behaviour of alumina ceramics. However, Kne- 
hans and Steinbrech did not show how to determine 
quantitatively these bridging stresses behind the crack 
tip. 

A consecutive sawcut experiment in conjunction 
with compliance measurements, recently introduced 
by Hu and Wittmann [13, 19-21], has been designed 
to overcome this shortcoming. In their method, an 
amount of crack extension was generated in a speci- 
men by application of an external load so that a fully 
bridged crack was developed. The specimen then 
underwent a series of sawcuts along the propagated 
crack so that each time a small portion of the fully 
developed bridging zone was removed. Compliance 
measurements corresponding to the removal of 
bridges at particular sites were then determined and 
used to calculate the bridging stresses [,13, 20, 21]. 
Basically, the theory relates the compliance measure- 
ments to the influence of the bridging stresses. This 
theory was further verified with computer simulation 
experiments [22] on compact tension (CT) specimens 
made from two different mortars. From the bridging 
stresses determined in the consecutive cutting ex- 
periments, complete load/displacement curves of the 
specimens and compliance variations during cutting 
were simulated. These results compared well with the 
actual experimental data. 

It is believed that the consecutive cutting technique 
is suitable to cementitious materials, coarse grain 
ceramics with long bridging zones, continuous fibre 
composites with a crack propagating transversely to 
the fibres, and short fibre reinforced composites. How- 
ever, this technique may not be applied to certain 
ceramic materials for which bridging zones developed 
are too small due to either limited specimen size or 
their fine grain structures. It is also difficult to conduct 
cutting experiments on mode-I interlaminar delamin- 
ation of polymer fibre-composites although the fibre 
bridging zones may be quite large. In this case, bridg- 
ing is mainly due to the misalignment of fibres be- 
tween individual plies within one laminate and fibre 
bridging occurs across the crack surfaces at different 

sites. Therefore, any cutting along the delamination 
plane will not only remove local bridges but also alter 
remote bridges linked by the same fibres. In the 
present paper, we seek to extend the original bridging 
stress theory developed by Hu and Wittmann [,13, 20, 
21] so that the bridging stresses can be determined 
without any consecutive sawcuts. Experimental res- 
ults from a range of materials are used to verify the 
extended theoretical model and these include carbon 
fibre/epoxy composites [23] with and without a poly- 
vinyl alcohol (PVAL) coating, cellulose fibre cements 
tested in both dry and wet conditions [5], an alumina 
[24] and a deplex ceramic [25, 26]. 

2. T h e o r e t i c a l  basis 
Compliance is one of the most common measurements 
that can be made in a fracture propagation experi- 
ment. Unloading of a specimen during testing to 
determine the compliance, C,,, is now an accepted 
method to measure the propagated length of a crack. 
However, if crack-interface bridging develops behind 
a crack tip due to crack shielding mechanisms dis- 
cussed in the last section, for such materials as fibre 
composites, coarse grain aluminas and cementitious 
materials, the compliances, Cu, measured upon unload- 
ing after some crack propagation are inevitably re- 
duced by the bridging stresses closing up the crack. 
Thus, the crack length cannot be accurately inferred 
from these C, measurements. We present in this sec- 
tion an extension of the compliance and bridging 
stress theory by Hu and Wittmann [-13, 20, 21] so that 
we can determine bridging stresses simply from the 
compliance measurements, C,, with no consecutive 
sawcutting. This extended theory, therefore, has a 
broader application since the limitation in performing 
a sawcut experiment has been removed and com- 
pliance measurements with and without bridging in- 
fluence can be easily obtained. 

A general bridging stress/crack face opening, %/m, 
relationship is shown schematically in Fig. la for 
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Figure 1 (a) Bridging stress crack opening (% - co) relationship of strain-softening materials; (b) crack-interface bridging stresses within the 
bridging zone, X, are controlled by the % - co relationship. 
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strain-softening materials. Here, softening implies that 
the bridging stress, %, decreases monotonically with 
crack face opening displacement, 0). The most import- 
ant material properties are: the maximum bridging 
stress c~ (or the tensile strength of material [11]), the 
specific fracture energy, G~, which is the area under 
the O'b--0) curve, the critical crack face opening dis- 
placement, %, when the bridging stress becomes zero, 
and the shape of the bridging stress distribution curve. 

A graphical representation of a fully saturated 
bridging zone, X, is shown in Fig. lb. Let C(a) be the 
compliance of a specimen with a crack length, a, with 
no bridging and C, the compliance measured in an 
experiment for the same a but with the influence of 
bridging stresses. C(a) can be either calculated theoret- 
ically or measured experimentally. It is expected that 

C(a) > C, (1) 

since bridging stresses behind the crack tip reduce the 
compliance. Hence, the crack length is underestimated 
if the conventional compliance method is used indis- 
criminately because the compliance only corresponds 
to some effective crack length aeff, i.e. C, = C(aeff), 
and aey f < a. 

Consider now Inequality 1 with respect to a sawcut 
experiment. If a sawcut is extended right to the crack 
tip, C, thereafter determined is the same as C(a). If a 
series of sawcuts are now performed to remove the 
bridging zone (shown in Fig. lb) in a step-wise fashion 
and the corresponding compliances C, determined 
after each sawcut, Inequality 1 eventually becomes an 
equality as the bridging influence on C, values is 
gradually diminished to zero. To illustrate the work- 
ing principle of this concept we consider a consecutive 
cutting experiment on a CT specimen of cement mor- 
tar as shown in Fig. 2. The x axis, Aa, indicates the 
increment of the sawcut notch length from the tip of 
the initial notch taken as the origin. That is Aa = 
a - a o, where a o is the initial notch length. C,(Aa) is 
virtually unchanged even after the notch length has 
been increased up to 32 mm by 6 successive sawcuts 
since no bridges are removed. C,(Aa) begins to in- 
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Figure 2 Consecutive sawcutting results from a mortar CT speci- 
men: the bridging zone X = 34 mm, the effective crack from C. 
underestimates the crack a by 10 mm, C. curve within the bridging 
zone, X, is directly related to the bridging stress distribution 
[20, 21]. 

crease as soon as some bridging stresses have been 
removed by cutting. Values of C,(Aa) within the bridg- 
ing zone has been fitted with a solid curve and com- 
pared with the compliance calibration curve for speci- 
mens with traction-free cracks. In this case, the initial 
compliance ratio before cutting C,/C(a) ~ 0.6, which 
verifies the Inequality 1. Fig. 2 also gives the addi- 
tional information that the bridging zone length, X, is 
about 34 mm and that if C, is used to determine the 
crack length it is underestimated by about 10 mm. 

If 0)c/X ~ l, as in most brittle materials, a linear 
crack face profile can be assumed within the bridging 
zone (see Fig. lb), i.e. 

0) x 
- (2) 

% X 

Based on this assumption, a general theory has been 
developed to convert the variation in C, into the 
bridging stress % at the site where the sawcut took 
place [13, 20, 21]. It is proved that during the con- 
secutive cutting 

%(x) C2(a) C',(x) 
c~.+ - C'(a) C 2 ( x )  (3 )  

where C'(a)= dC(a)/da and C',(x)= dC,(x)/dx, and 
that before any sawcut (see Fig. lb) 

C(a) I_C(a) } Gf 
C'(a) t c.  - 1  = x--%% (4) 

Obviously, Equation 4 is valid for any C, measure- 
ment after the full bridging zone has been developed 
and it represents the compliance measurement with- 
out any sawcut. Note that in Equation 3, however, 
C,(x) is used for the compliance measurement after the 
sawcut is made to a distance, x, away from the crack 
tip (Fig. lb). 

To extend this theory for the evaluation of bridging 
stresses without introducing sawcuts to the bridged 
crack we realize that an unsaturated bridging zone is 
identical to a bridging zone which has been fully 
developed and then partially removed by sawcutting. 
Therefore, Equation 3 can also be used to analyse the 
compliance C, before a bridging zone is fully de- 
veloped. Let ~ r  indicate the bridging stress at the 
initial notch tip and C, the measured compliance 
before the bridging zone is fully developed. Equation 3 
hence becomes 

f ir  ~b(x) C2(a) C'u 
- - A a  < X (5 )  cy,, cy,. C'(a) C 2 

where C', = dC,/dx as before. During unloading only 
C,, rather than C',( = dC,/dx), is measured. There- 
fore, Equation 5 needs to be further modified. 

Foote et al, [12] proposed a simple power law 
relationship for bridging stresses in strain-softening 
materials 

E % - 1 - n > 0 (6 )  
O" m 

The softening index or exponent n depends on the 
precise bridging mechanisms. For instance, n = 1 is 
typical of materials where frictional pull-out is the 
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major toughening mechanism. The specific fracture 
energy, G I, dissipated in the bridging zone is given by 

f: G f  : -  ffbdO - ~  O)c 
n + 1 (7) 

using Equation 6 for %. Therefore, the softening index 
n is well defined by G I, or,, and c%. From Equation 7 
and Fig. la, it is clear that 1/(n + 1) is simply the ratio 
of the energies Gy/CYmCO~, or the areas under the solid 
and dash lines in Fig. la. This ratio is what can be 
determined by experiment through Equation 4. It is 
clear that for strain-softening materials Gy/crmO3 ~ < 1. 
This relationship holds for most quasi-brittle mater- 
ials. 

Equation 6 simplifies the application of Equation 3 
or 5 in the case where a bridging zone has not been 
fully developed. By substituting Equations 2 and 6 
into Equation 3 or 5, it is obtained that 

C2(a) d C , , ( x ) [ x l n  
C'(a) C2(x) - 1 - ~ dx (8) 

Integrating this equation for 0 < x < Aa and 
C(a) > C.(x) > C., we obtain 

C(a)~C(a)  t - X {1 [1-~-1 "+1} 
C'(a) ( C, 1) n + l - 

(9) 
where C, is simply the compliance before the bridging 
zone is fully developed. It can be seen by comparison 
of Equations 4 and 9 that the left hand sides of both 
equations denoted by ~ below are exactly the same 
whether the bridging zone is fully developed or not. 
Hence 

C(a) ~ C(a) } 
~P - C'(a) l C,, 1 

f , x  1 Aa >_ X 
(lO) 

~ x  1 -  1 - -  n+l 

If Aa/X << 1, the above equation can be simplified to 

qb ~ Aa (11) 

It is also interesting to look at the derivative d(p/da 
(for Aa < X) given by 

dqbda - I1 - ~ 1 "  = I1 - ~ 1 "  

(~b O'T 
- - ( 1 2 )  

O" m O" m 

if X is constant and da = d(a o + Aa) =dAa.  How- 
ever, it should be emphasized that before a bridging 
zone is fully developed, X only indicates the distance 
from the crack tip to a point where the crack face 
opening is equal to c%. Therefore, X may well be a 
variable depending on geometry and size etc. and the 
application of Equation 12 to determine bridging 
stresses is restricted. 

Let Gi and K i be the initial values of G R and K R 
curves, and G~ and K~ be the plateau values. Gf or 
the area under the ~b -- CO softening curve can also be 

given by [2, 4] 

Gf = G~ - G i 

1 
E [K2 ~ - K~] (13) 

where E is the Young's modulus. Hence, G I in Equa- 
tion 7 can be determined from crack-resistance curves. 

If both crack growth, Aa, and compliance, C,, are 
measured experimentally, a ~ curve can be construc- 
ted using Equation 10. From the 0 curve both the fully 
saturated bridging zone, X, and the softening index, n, 
can be easily determined. Since 1/(n + 1) is the energy 
ratio Gf/~rm% as given by Equation 7, the qb curve is 
actually a material toughness curve. 

It is also worth noting that during the consecutive 
sawcut experiments shown in Fig. 2 the crack length, 
a, remains constant; only the fully saturated bridging 
zone, X, is removed in a step-wise fashion by an 
amount dx. Differentiating ~ with respect to x and 
keeping a constant gives 

d~ C2(a) C',(x) r 
- -  - - (14) 
dx C'(a) C,2(x) (Ym 

which is Equation 3 used for the derivation of 
Equation 10. 

The compliance form of Equation 10 can be used to 
determine 0(a) in Equations 12 and 0(X) in Equation 
14. qb(a) in Equation 12 is measured as a function of 
the crack length, a, and no sawcut is involved in its 
evaluation. On the other hand, ~(x) in Equation 14 is 
measured during consecutive cutting, and the crack 
length, a, remains constant. However, in both situ- 
ations the function qb defined by the compliance form 
of Equation 10 does provide a simple solution for the 
evaluation of bridging stresses. The fact that qb can be 
easily measured in experiment makes the method 
more attractive. 

3 .  B r i d g i n g  s t r e s s e s  i n  c e r a m i c  m a t e r i a l s  

3.1. KR and 0 curves of an alumina 
The R curve behaviour in alumina has been studied by 
many authors. Probably the work of Swanson et al. 
[27] provides the most convincing evidence on crack- 
interface grain bridging behind the tip of a crack. The 
evolution of localized grain bridges in a coarse grain 
alumina can be clearly seen from their in-situ micro- 
graphs. The two R curves obtained by Knehans and 
Steinbrech [8] from their crack wake sawcut ex- 
periments also demonstrate the bridging effect on the 
fracture resistances of alumina before and after the 
sawcut. Thus alumina is an ideal material to apply the 
bridging stress theory summarized in Equation 10. 

In the work of Lathabai et al. [28], a coarse grain 
alumina (35 gm) was tested in a CT specimen with an 
initial ao/Wratio of 0.325 where a o was 14.28 mm and 
the thickness, t was 2 mm. Both crack length, a, and 
corresponding compliance, C,, were measured in their 
experiments. These data are used to construct the K R 
and qb curves shown in Fig. 3. Standard formulae for 
CT specimens are used to calculate the stress intensity 
factor, K, and the compliance C(a) without crack- 
interface bridging. 
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Figure 3 Crack resistance curve of an alumina (35 gm) measured 
with a CT specimen [28], and the corresponding ~ curve: ( I )  K 
curve and (�9 ~ curve. 

From the K R curve in Fig. 3 it appears that when 
crack growth commenced there was a rapid crack 
extension of about 1 mm although the specimen had 
been pre-cracked from the sawcut notch. It is therefore 
not easy to define Ki from this K a curve but the 
plateau value, K~ ( ~  5.5 M P a m  l/z) is clearly ob- 
served when the crack extension, Aa, is bigger than 
5 mm. The do curve in the same figure shows a steady 
increase of do with Aa until its plateau value, do~, of 
1.2 mm is reached for Aa > 5 ram. By comparison of 
the first few data points in Fig. 3 and Equation 1 ! (i.e. 
Aa<<X) it can be concluded that crack bridging has 
not been established until Aa is about 1 mm from the 
initial notch tip. The initial rapid crack extension of 
nearly 1 mm also supports this conclusion. Therefore, 
the fully saturated bridging zone, X, should be be- 
tween 4 to 5 ram, rather than 5 to 6 mm as shown in 
Fig. 3. Due to the scatter in do over the region of 
1 < Aa < 5, it is impracticable to apply Equation 12 
to determine the bridging stress distribution. How- 
ever, the relationship that dooo = X/(n + 1) for Aa > X 
provides a simple solution to evaluate n and the 
bridging stresses. Assuming the average X = 4.5 mm 
and since dooo = 1.2 mm, we obtain n = 2.8. 

3.2. KR and d~ curves of duplex ceramic 
Mechanical properties and K s curve behaviours of 
duplex ceramics have been studied extensively by Lutz 
and his co-workers [25, 26, 29]. The duplex ceramic is 
a two phase material based on alumina and zirconia. 
The well dispersed second phase particles form the 
pressure zones due to their volume expansion associ- 
ated with phase transformation upon cooling from the 
fabrication temperature. These particles or pressure 
zones cause crack deflection and branching or chained 
cracks ahead of the main crack giving rise to an 
effectively reduced elastic modulus of the local mater- 
ial. This is equivalent to a frontal microcracking zone. 
As the main crack is extended these pressure zones" 
together with the untorn ligaments of the chained 
cracks induce a closure stress at the wake of the crack 
tip. Consequently, the crack growth resistance of the 
duplex ceramic is increased. Equation 10 therefore can 
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Figure 4 Crack resistance curve of a duplex ceramic measured with 
a CT specimen [25, 26], and the corresponding qb curve ( � 9  K curve 
and (�9 qb curve. 

be used in this case to determine the equivalent bridg- 
ing stresses at the crack-interface. 

One of the K R curves of a duplex Ceramic [25] is 
shown in Fig. 4, which is measured using a CT speci- 
men with dimensions 26 x 23 x 3 mm 3, and an initial 
ligament ( W -  a) of 15 mm (see experimental details 
in References 25 and 26). The corresponding do curve is 
evaluated with Equation 10 using the compliance data 
[30]. 

It is not possible to determine the fully saturated 
bridging zone, X, from either the K R or do curve of the 
duplex ceramic without a critical examination of these 
toughness curves because X is so large that both 
resistance curves are affected by the end effects of the 
specimen geometry as the bridging zone approaches 
the boundary of the specimen. These end effects on R 
curves have been discussed recently [3, 4, 31]. 

Equation 10 indicates that do should always be less 
than Aa for strain-softening materials since n > 0. 
However, d o starts with - 2 and the last three meas- 
urements of d o in Fig. 4 indicate that do + 2 > Aa. 
Hence, the toughness curves for Aa > 10 mm should 
not be considered as true material properties. If the 
plateau value for the duplex ceramic is reached at 
Aa between 8 and 10mm, Koo is between 9 and 
13 M P a m  -1/2 as reported in [30]. Then X/(n + 1) 
= do~ + 2 and n = 0.6-0.5. The upper and lower 

bounds of K~,  estimated in this way for the duplex 
ceramic are comparable to Ko~ of 7 and 9 MPa m-1/2 
of two similar duplex ceramics [25]. 

The reason that do starts with a negative value is 
because Equation 10 considers only crack-interface 
bridging. If the amount of microcracking in the frontal 
process zone of the main crack is small compared to 
crack wake bridging such as in aluminas, do is greater 
than zero. However, if extensive microcracking occurs 
such as in this duplex ceramic with multiple chained 
cracks before the growth of the main crack, the stiff- 
ness of the material is reduced and dO starts with a 
negative value. 

4. Bridging stresses in fibre composites 
4.1. K R and qb curves of cellulose fibre 

cements 
R curve behaviours of cellulose cements under both 



wet and dry conditions have been investigated by Mai 
and Hakeem [5] using double cantilever beams (DCB) 
with an initial crack length of 37 ram, specimen thick- 
ness 5 mm and width 70 ram. The elastic moduli of the 
cellulose fibre cements are: 5.50 and 9.65 GPa, respect- 
ively, for wet and dry conditions. Crack resistance 
curves are given in Fig. 5 in which the G R curves are 
obtained using linear elastic fracture analysis and the 
modified potential energy release rate G* curves are 
constructed by taking into account the residual dis- 
placement at zero load [5]. 

The difference in compliances for a traction-free 
notch and a bridged crack of the same length has been 
emphasized and demonstrated with experimental res- 
ults. They found for the same crack length the com- 
pliance for the traction-free notch was bigger than that 
for the natural crack because of fibre bridging. There- 
fore, the 4) curve approach given in Equation 10 
should apply. Using their compliance data for both 
the wet and dry DCB cellulose fibre cements, corres- 
ponding d o curves are obtained in Fig. 6. 

From Figs 5 or 6 it can be estimated that the fully 
saturated bridging zone X ~ 50ram for both wet 
and dry conditions. However, Fig. 6 shows that do~ 
21 mm for wet and ~ 11 mm for dry conditions. The 
scatter in the plateau region of do in Fig. 6 suggests 
that the fracture propagation of cellulose fibre ce- 
ments in dry condition is not as stable as tested in wet. 
From Equation 10 ( n =  X / d o o o - 1 )  we obtain 
n = 1.4 and 3.5 for wet and dry conditions. Since a 
bigger softening index n means that the bridging stress 
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Figure 5 Crack resistance curves of cellulose fibre cements meas- 
ured with DCB specimens [5]: (I)  G* (wet); (K3) G R (wet); (0) G* 
(dry) and (�9 GR (dry). 

decreases more quickly away from the crack tip and 
that fracture is less stable, these wet and dry values ofn 
are consistent with the GR curves shown in Fig. 5. 

4.2.  KR and  (h cu r ves  o f  c a r b o n  f i b r e / e p o x y  
c o m p o s i t e s  

It is well-known that the fracture toughness of a 
fibre/polymer composite is not simply the sum of 
contributions by the constituents, but is governed 
more importantly by the extent of energy absorption 
processes through various toughening mechanisms, 
depending on fibre and matrix properties, and the 
nature of bonding at the fibre/matrix interface. The 
effects of an interracial coating of polyvinyl alcohol 
(PVAL) on Charpy impact and mixed mode fracture 
toughnesses of unidirectional carbon fibre reinforced 
epoxy resin composites have been investigated by Kim 
and Mai [32, 33]. The mode-I delamination fracture 
toughness of the same carbon fibre/epoxy composites 
with and without a PVAL coating on the fibres has 
also been studied [23] using DCB specimens, approx- 
imately 20 x 3.7 x 150 mm 3, made up from 12-ply uni- 
directional carbon fibre/epoxy composites. Pre-cracks 
36 to 40 mm in length were introduced in the mid- 
plane of the thickness with Teflon tapes. The com- 
pliances were measured as a function of delamination 
crack growth by successive loading and  unloading of 
the specimen. Using these data the K R and do curves 
for the two types of composites were determined. 
Example K R and do curves are given in Fig. 7 for the 
uncoated fibre composite, and Fig. 8 for the coated 
fibre composite. 

It was observed that the fibres bridging across two 
crack surfaces often form a bundle. The failure or even 
partial failure of the bundle of bridging fibres causes 
local unstable fractures as shown by the discontinuous 
curves in Fig. 7. This characteristic was observed for 
both coated and uncoated fibre composites. However, 
delamination was over-all more stable for the PVAL 
coated composite due to the presence of a rubbery 
coating on the fibres. Since the composites were made 
up from unidirectional fibres and the pre-crack was 
introduced between two plies, fibre bridging might not 
always be established at the beginning of delamination 
as shown in Fig. 8. 
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The do-curve in Fig. 8 for Aa between 0 and 17 mm 
shows that do = 0 thus supporting the observation that 
no fibre bridging exists in this region. However, do rises 
with Aa for longer delamination crack growth con- 
firms that the dominant toughening mechanism for 
the R curve behaviour is due to fibre bridging behind 
the crack tip. 

Taking all the K R and do curves together we obtain 
Ko~ = 10 MPa m 1/2 and do~ = 9.4 mm for the PVAL 
coated composi te ,  and K~o = 8 M P a m  -1/2 and 
dooo = 11 mm for the uncoated composite. The fully 
saturated fibre bridging zone, X, is about 25 to 30 mm 
for the PVAL coated fibre composite and 30 to 35 mm 
for the uncoated fibre composite. However, the soft- 
ening index n ~ 2 for both cases. 

5 .  D i s c u s s i o n  

5.1. Bridging stress distr ibution 
The softening index, n, in Equation 6 defines the non- 
dimensional bridging stress distribution, % / %  versus 
m/c0c. Equation 10 has so far been applied to various 
materials to determine n. One common feature clearly 
shown in Figs 3-8 is that both the K R (or GR) and do 
curves of any given material are very similar graphi- 
cally. They reach the plateau values at the same crack 
extension (e.g. Fig. 3 for the alumina); show similar 
increasing trends with Aa (e.g., Fig. 4 for the duplex 
ceramic); give higher plateau values for wet cellulose 
fibre cements (Figs 5 and 6); display the same localized 
unstable delamination crack growth of the uncoated 
carbon fibre/epoxy composite (Fig. 7); and prove that 
crack-interface bridging is the major toughening 
mechanism in the PVAL coated carbon fibre/epoxy 
composite (e.g. Fig. 8 shows that KR is constant at 
about 5 MPa m 1/2 and do = 0 if no bridging exists 
and when bridging takes effect both KR and do rises 
with Aa). 

The softening index, n, of alumina ceramics deter- 
mined with other methods are recently reported in the 
literature. For instance, n ~ 2.5 has been obtained 
from in-situ scanning electron microscope (SEM) 
measurements of the crack profile behind a crack tip 
for an alumina with an average grain size of 11 gm 
[34]; and n ~ 3 determined from R curve fitting by 
trial and error [31] for an alumina with an average 
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grain size of 16 gin. These n values compare very well 
with our result of n = 2.8 and this agreement lends 
some support to the bridging stress theory developed 
in this paper. However, the compliance-based method 
is much simpler to perform than the others. 

Besides the determination of the non-dimensional 
bridging stress distribution ( % / %  versus c0/c0c), a do 
curve may also be used to verify whether crack surface 
bridging is the major toughening mechanism (i.e. 
do > 0) as shown in Fig. 8, and whether a K R curve is 
still valid (i.e. do < Aa) as shown in Fig. 4. 

5.2. Crack wake bridging and frontal 
microcracki ng 

According to Equation 10, do should be always bigger 
than, or at least equal to zero. However, it is noticed 
that sometimes a do curve starts with a negative value, 
such as in Figs 4 and 6. This phenomenon can be 
explained with limited frontal microcracking before 
the propagation of a main crack. 

If microcracking exists before any visible crack 
extension the experimental compliance, C,, of a speci- 
men will be increased due to the damage in front of the 
initial crack a o. Since C(ao) is the compliance without 
any damage and bridging it follows that: 

C(ao) < C, (15) 

Thus do evaluated with Equation 10 will be less than 
zero. Let us now assume that both microcracking and 
bridging mechanisms coexist in a material. A qb curve 
defined by Equation 10 will start with a negative 
value, and gradually increase with crack extension 
when bridging is developed behind the crack tip. 
When contributions to the compliance from micro- 
cracking and bridging are balanced after a certain 
amount of crack extension, qb = 0. If crack-interface 
bridging is the main toughening mechanism, do will be 
bigger than zero with further increase in crack growth. 
Normally if a microcracking mechanism exists in a 
material, microcracks will always be generated in 
front of the advancing main crack. This influence in 
toughness throughout the crack growth process can 
be estimated by the initial negative d o value, as is done 
for the duplex ceramic (i.e. do + 2 is used for the 
toughness evaluation). 

From the above discussion and Inequalities 1 and 
15, it is clear that a do curve can be used to estimate the 
relative influence of crack-interface bridging and 
frontal microcracking. Therefore, it can be argued 
from the do curves shown in Fig. 6 that microcrack 
toughening compared with fibre bridging is negligible 
in cellulose fibre cements tested in both wet and dry 
conditions. However, if both the K R and do curves in 
Fig. 4 are valid only for Aa < t0 mm, microcracking 
may contribute a quarter of the total toughness in- 
crease of the duplex ceramic although the crack- 
interface bridging is still the major toughening mech- 
anism (i.e. at Aa = 10 mm do from bridging is about 6 
since do from microcracking is around 2). Extensive 
microcracking observed in the duplex ceramic speci- 
mens using a special dyeing technique 1-25] confirms 
this conclusion deduced from the do curve in Fig. 4, 



5.3. Frictional degradation analysis with qb 
function 

One useful extension of the qb curve approach is in 
cyclic fatigue of quasi-brittle materials with crack- 
interface bridging as the main toughening mechanism 
such as in aluminas. The complex fatigue crack 
growth process is inevitably influenced by the R curve 
behaviour from bridging while bridges developed be- 
hind the crack tip are subjected to frictional degrada- 
tion due to cyclic loading. This coupling problem 
cannot be solved by simply superimposing the 
R-curve behaviour onto the cyclic crack growth law. 
The friction degradation of bridges has to be known 
explicitly before the R curve behaviour can be incorp- 
orated in a cyclic fatigue analysis. 

Consider a fully saturated bridging zone, X. During 
cyclic fatigue, the frictional degradation of bridges can 
be evaluated by the compliance ~ function if the 
fatigue crack growth of the main crack, a, can be 
suppressed, or limited when compared with X. This 
requires the maximum cyclic load should be always 
less than the critical load at which the main crack, a, 
grows during fatigue. Let N indicate the number of 
fatigue cycles. Under the condition that a is approxi- 
mately constant, only the unloading compliance, C,, 
in the qb function is influenced by the frictional degra- 
dation of the bridges. From Equations 4 and 10 

C(a) { C(a) } 
O ( N )  - C'(a) C.(U~ -- 1 

- Gs(N) X(N)  
~mO~(n) 

1 
- X ( N )  (16) 

n + l  

where a is a constant. The frictional degradation 
reduces the magnitude of the bridging stress cyb(N), 
the critical crack opening ~%(N), and then GI(N ) the 
area under the cyb(N)-O~c(N ) curve, as shown in Fig. 9 
where the critical load is applied. Since only the 
magnitude of the bridging stress and not the bridging 
mechanism is changed during cyclic fatigue it is reas- 
onable to assume that the softening index, n, is main- 
tained constant. Thus, both c%(N) and Gy(N) are 
reduced proportionally with the frictional degradation 
and the Gf(N)/o)c(N) ratio is maintained constant, i.e. 

GT(N) _ Gf (17) 
O~ c ( N ) o~ ~ 

A similar constant Gr ~ ratio assumption has also 
been used to study the fracture process zone width 
variation in cementitious materials and the size effect 
in Gy [20, 35]. With Equation 17, the variation in 
C,(N) or the ~(N) function after fatigue cycle N is 
directly related to the diminution of the bridging 
zone, X. 

Let N~ be the critical number of fatigue cycles at 
which the saturated bridging zone is completely des- 
troyed due to the frictional degradation (in order to 
destroy all the bridges without causing crack growth 
the maximum load in the cyclic fatigue experiments 

has to be continually decreased. This problem is fur, 
ther discussed in Reference 24). Thus, if N = N c, 
X(N)  = 0 and C , ( N ) =  C(a). Obviously, if N = 0, 
X ( N ) = X .  Let A(p(N)=gp(a)-dp(N),  given by 
Equations 10 and 16 

Aqb(N) = (~(a)-  qb(N) 

_ C2(a){ I 1 }  
C'(a) C, C,(N) 

x -  x{u) N < N c 
= .+l (18) x N > Nc n + l  

Comparing Equations 10 and 18, it is clear that A~b(N) 
and ~b(a) are similar curves having the same plateau of 
X/(n  + 1) after Aa > X or N > Nc. 

The length of the bridging zone, X(N), during cyclic 
fatigue can be determined from either Equation 16 or 
18, i.e. 

X(X)  = (n + 1)qb(X) 

= X - (n + 1)Aqb(N) (19) 

The critical crack opening coc(N ) during cyclic fatigue 
is given by 

r ) = ~ 
X 

= o ~ c ( n ~  ) ep(N) 

= c%[1 (n + 1)Aqb(N)]x  (20) 

and the corresponding bridging stress distribution 
during cyclic fatigue is given by 

~b(N) = ~m 1 (21) 
e%(N) 

The variations in ~b and eoc during fatigue is illustrated 
in Fig. 9 for the condition that the main crack a is 
about to grow. 
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m 

Figure 9 Variation in crack-interface bridging stresses due to fric- 
tional degradation of bridges during cyclic fatigue. 
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6. C o n c l u s i o n s  
A new compliance qb function considering the influ- 
ence of crack-interface bridging stresses has been de- 
fined by Equation 10 in this paper, from which a qb 
curve can be constructed easily in experiment. The 
function has a rigorous physical and mathematical 
basis, extended from the compliance and bridging 
stress theory [13, 20, 21]. Two d~ curves can be 
obtained from compliance measurements: qb(a) with 
no sawcutting and qb(x) with consecutive sawcutting. 
Their respective derivatives defined in Equations 12 
and 14 give the simplest expressions for the bridging 
stress in terms of compliance. Experimental results 
obtained from a range of engineering materials show 
that both the K R (or GR) and d~ curves of a given 
material have similar features and the length of a fully 
saturated bridging zone can be determined equally 
well from both curves. The physics behind the rela- 
tionship between the KR and qb curves will be further 
investigated in detail in a separate paper [36]. 

From a qb curve measured in experiment the non- 
dimensional bridging stress distribution defined by 
Equation 6 can be readily determined with Equation 
10. This new method for the determination of bridging 
stresses is much simpler than the consecutive sawcut 
technique if the precise bridging stress distribution is 
not required. The results collected in this paper sug- 
gest that the method is applicable to a wide range of 
brittle materials and fibre composites for which the 
main toughening mechanism is due to crack-interface 
bridging. 

The potential of the qb curve to estimate the relative 
influences of crack-interface bridging and microcrac- 
king and to distinguish the so-called end effect associ- 
ated with R curve measurements when a crack is close 
to the backface of a specimen warrants further inves- 
tigation. In addition the use of the ~) curve to study 
frictional degradation in bridges behind a crack tip 
due to cyclically applied loads should be examined. 
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